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Abstract: Drinking alcohol and smoking cigarettes results in the formation of reactive 

aldehydes in the lung, which are capable of forming adducts with several proteins and 

DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels 

in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the 

above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein 

are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These 

aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form 

both stable and unstable adducts. This adduction may disturb cellular functions as well as 

damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, 

malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde 

(MAA) protein adducts have been shown to initiate several pathological conditions in the 

lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift 

and base-pair substitution mutations, whereas MAA protein adducts have been shown to 

induce inflammation and inhibit wound healing. This review provides an insight into 

different reactive aldehyde adducts and their role in the pathogenesis of lung disease. 
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1. Introduction 

The lung is a highly specialized organ charged with the principal role of O2/CO2 exchange between 

atmosphere and bloodstream [1]. In addition to this gas exchange, it also serves as an interface 

between host and external environment [1]. In this regard, the lungs can be considered an external 

organ due to continual exposure to ambient air [2]. The enormous surface area of the airways and 

continuous exposure to external air makes the lung vulnerable to numerous inhaled toxicants, gases, 

pathogens and chemicals [2]. All of these exposures make the lung susceptible to varying degrees of 

physical, chemical, and biological insults [3]. To combat these insults and to defend against inhaled 

pathogens and other toxicants, the lung employs a defense mechanism including exhalation, cough 

reflex, ciliary beat, and mucus clearance [4], as well as a highly complex innate immune system 

including airway epithelial cells [5] and resident and recruited leukocytes [2]. This first line of defense is 

later followed by specific acquired immune responses associated with the activation of T and B cells aimed 

against specific antigens [6]. In the case of continuous insults, lung defense is compromised, allowing 

inhaled toxic agents to stimulate the generation of reactive oxygen species (ROS) [7]. These ROS induce 

intracellular responses resulting in the release of pro-inflammatory cytokines and chemokines [7] that 

stimulate the influx of neutrophils and monocytes into the lung [7]. Continuous inhalation of pathogens 

or toxic agents, however, may result in excessive ROS production, leading to chronic inflammation and 

lung injury [8]. If not controlled, these ROS may induce inflammation and DNA damage, inhibit apoptosis, 

and may also activate proto-oncogenes through initiation of several signal transduction pathways [9]. 

Therefore, oxidative stress associated with increased production of ROS in the lung due to various 

toxic inhalants may predispose individuals to lung diseases such as chronic obstructive pulmonary 

disease (COPD) [10]. 

2. Role of Alcohol in Lung Disease 

Chronic alcohol abuse or alcoholism costs about $223 billion annually to the U.S. economy [11] and 

is the fourth leading preventable cause of death, causing more than 88,000 deaths annually [12]. Drinking 

more than two drinks/day for men and one drink/day for women can have deleterious health effects 

and is associated with increased mortality [13]. Alcohol abuse is common among critically ill patients 

and is attributed to about 40% of admissions to the intensive care unit [14]. Tissue injury to liver, 

stomach and brain as well as cancers of the upper aero-digestive tract, stomach, and liver are known 

health risks associated with chronic alcohol consumption [15]. In the lung, alcohol over-consumption 

predisposes the host to infectious diseases such as pneumonia [16], as well as acute respiratory distress 

syndrome (ARDS) [17]. After oral ingestion, less than 10% of alcohol consumed is excreted unchanged 

in urine, sweat and breath [18,19]. In the lung, due to alcohol’s volatility, it diffuses freely from the 

bronchial circulation into the airways, rapidly condenses with decreasing temperature, and deposits 

back onto the airways. This recycling of alcohol vapor (or “rain effect”) potentially results in a high 

concentration of alcohol in the airways [20]. Thus, exhaled alcohol breath tests are commonly used to 

measure alcohol ingestion by law enforcement agencies in estimating blood alcohol levels [21]. 

Bacterial infection and acute lung injury are the most significant pulmonary effects of such alcohol 

abuse [22]. Increased risk for infection with tissue-damaging gram-negative pathogens, such as 
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Klebsiella pneumonia, is common in alcoholic patients [23]. Other risks associated with alcohol abuse 

are aspiration of gastric acid and/or microbes and impairment of mucous-facilitated clearance of bacterial 

pathogens [22]. In part, this explains the increased risk of respiratory infections in individuals with alcohol 

use disorders (AUDs). Alcohol-mediated suppression of host immune response and pathogen-clearing 

function of alveolar macrophages could further explain the increased risk of both bacterial pneumonia 

and tuberculosis [24]. 

Production of white blood cells in the bone marrow and superoxide production in neutrophils are 

also decreased in chronic alcohol consumption [25]. Chronic alcohol consumption increases alveolar 

capillary permeability, protein concentration in the alveolar lining fluid and pulmonary edema formation 

in lung [26]. Chronic alcohol ingestion also depletes the antioxidant, glutathione (GSH), throughout 

the alveolar lining fluid of the lung and within macrophages [17]. Other deleterious effects include 

abnormal synthesis and secretion of lung surfactants and increased apoptosis of type II cells [27]. 

Although alcohol has many adverse effects on lung function, only a limited number of studies have 

examined the biochemical processes involved in the mechanism of such injury. Interaction of alcohol’s 

metabolites with other exposures could be one of several possible causes [28]. Therefore, development 

of alcohol co-exposure markers in the lung could be of interest in understanding the pathogenesis of 

lung disorders associated with alcohol abuse. 

3. Role of Cigarette Smoking in Lung Disease 

Cigarette smoking is the number one preventable cause of death in the United States, resulting in 

480,000 deaths each year [29]. A causal association between cigarette smoking and cancers of lung, 

liver, nasopharynx, oropharynx, and larynx has been established by epidemiological studies [30–32].  

In developed countries, cigarette smoking attributes to approximately 90% of lung cancer cases in 

males and 80% in females [33,34]. The number of cigarettes smoked, inhalation practice, duration and 

early start of smoking are the critical risk factors [35]. Thousands of chemicals contained in tobacco 

smoke are known to have carcinogenic properties and can undergo metabolic activation in tissue 

leading to formation of reactive intermediates [36,37]. Besides being a risk factor for cancer development, 

smoking is also the main cause for COPD development [38]. 

Cigarette smoke contains high concentrations of free radicals in both the gas and tar phases [35]. 

These stable oxidized intermediates induce endogenous oxidative stress and inflammation [39]. 

Oxidative DNA damage and lipid peroxidation (LPO) of cell membranes are important effects of 

cigarette smoke-induced oxidative injury [40]. LPO provides a continuous supply of free radicals for 

the oxidation of polyunsaturated fatty acids in membranes causing oxidative cell damage [41]. 

Cigarette smoke-mediated oxidative stress induces local inflammation resulting in increased numbers of 

macrophages in the lung [42]. These macrophages recruit additional inflammatory cells into the lung 

including neutrophils, monocytes, eosinophils, and T lymphocytes [43]. The result is a destructive 

cascade of exposure of the elastolytic compounds and ROS that destroy the lung structure resulting in 

emphysema and obstructive bronchitis [44]. In addition, high carbonyls content such as acrolein and  

4-hydroxynonenal (4-HNE) in the cigarette smoke also leads to carbonyl stress in the lung [45]. Other 

carbonyl compounds present in cigarette smoke are formaldehyde, acetaldehyde, propanal and 

malondialdehyde [46]. These carbonyls generated as a result of oxidative stress may play an important 

role in the progression of lung disease such as COPD [47]. 
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4. Other Environmental Oxidants 

In recent years, ambient air pollutants and diesel exhaust particles have been linked to oxidative 

damage in cells and in tissue [48]. Air pollutants also contribute to oxidative stress in the pulmonary 

system and play a role in adverse lung effects [49]. Ozone, a secondary air pollutant, is a known 

pulmonary irritant [50]. In addition to a single agent, exposure to combined air pollutants, such as 

ozone and particulate matter (PM), greatly induces pulmonary oxidative stress and inflammation [50]. 

This could explain the association between environmental air pollutants and increase in pulmonary 

diseases and mortality demonstrated by several clinical and epidemiological studies [51–53]. 

5. Source of Aldehydes in the Lung 

Significant amounts of ingested alcohol reach the airways via the bronchial circulation where it is 

either metabolized or is excreted by exhaling the vapor [54]. Although the majority of ingested alcohol 

is metabolized in the liver, the mammalian lung can also metabolize ingested alcohol through the 

action of alcohol dehydrogenase (ADH) to acetaldehyde [54]. Thus, after alcohol consumption, airways 

are exposed to high concentrations of acetaldehyde, a primary metabolite (Figure 1) [55]. In addition to 

ADH, during chronic alcohol consumption, alcohol is metabolized by microsomal cytochrome P450 

2E1 (CYP2E1) and peroxisomes to generate ROS leading to oxidative stress [56]. Human lung cells, 

especially bronchial epithelium, club cells, type II pneumocytes, and alveolar macrophages, have been 

shown to express CYP enzymes [57]. CYP2E1-generated ROS easily react with lipid membranes causing 

LPO [58], which is important in the generation of reactive aldehydes such as malondialdehyde (MDA) 

and other products, like 4-HNE [59,60]. 4-HNE forms Michael adducts with nucleophilic sites in DNA, 

lipids and proteins [60]. Another major source of reactive aldehydes in the lung is from the vapor  

phase of cigarette smoke, which is known to contain several aldehydes including butyraldehyde, 

isobutyraldehyde, propionaldehyde, and acetaldehyde [61]. Among the different aldehydes contained 

in cigarette smoke, acetaldehyde is the major one, presenting in very high concentrations [62] 

(approximately 920 �g per cigarette) [63]. Additionally, acetaldehyde is widely used as a natural 

constituent of foods and is present in the environment as a pyrolysis product [64]. Acetaldehyde and MDA 

also are produced in biologically significant amounts during the metabolism of alcohol [65]. Higher 

levels of aldehydes have also been reported in exhaled breath condensate and saliva in current smokers 

and patients with COPD [66,67]. Aldehydes have also been identified in the bronchoalveolar lavage 

(BAL) fluid of animals exposed to ozone [68]. These aldehydes, especially acrolein, MDA, formaldehyde 

and crotonaldehyde, are highly reactive and could form DNA adducts in a variety of human tissues [69]. 

Additionally, significantly elevated levels of DNA adducts and smoking-related protein adducts were 

detected in BAL cells as well as in the bronchial epithelium and the peripheral lung of smokers [70,71]. 

The lung is also vulnerable to oxidative injury as a result of exercise and high altitude exposure due to 

oxidative stress [72]. In addition to the lung, increased MDA levels are also reported in excreted urine 

of patients with COPD after exercise as a result of exercise-induced stress [73]. 
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Figure 1. Generation of lung aldehydes and adduct formation. Alcohol is metabolized by 

alcohol dehydrogenase (ADH) to acetaldehyde (AA). But during chronic alcohol consumption, 

CYP2E1 is induced leading to generation of ROS like superoxide, hydrogen radical and 

hydrogen peroxide. This promotes lipid peroxidation and generation of malondialdehyde 

(MDA) and 4-hydroxynonenal (4-HNE). Cigarette smoke itself contains high concentration 

of AA, acrolein and formaldehyde. In addition to this, smoking cigarettes also induces 

local inflammation in lung causing more generation of ROS. This further promotes lipid 

peroxidation generating more MDA and 4-HNE. Acetaldehyde and MDA could form hybrid 

adduct through Schiff base reaction when 2 mole of MDA react with 1 mole of AA to form 

a stable hybrid adduct [74–77]. 

6. Pathological Implications of Lung Aldehydes 

The accumulation of LPO products in human tissues is a major cause of cellular and tissue 

dysfunction as it may lead to membrane dysfunction and oxidative stress-related diseases [78]. Reactive 

�, �-unsaturated aldehydes generated as a result of LPO could contribute to vascular disease and other 

oxidative stress-related pathologies due to modification of biomolecules [79]. Because oxidative stress 

plays an important role in the development and/or progression of vascular diseases such as atherosclerosis, 

serum malondialdehyde and malondialdehyde-acetaldehyde levels are used as biological markers of 

oxidative stress [80]. 4-HNE, a highly reactive end product of LPO [10], has been linked to a number 

of pathologies such as alcoholic liver disease, COPD, emphysema, asthma, Alzheimer’s disease and 

Parkinson’s disease [81]. In the lung during oxidative stress, reactive LPO products are degraded very 

slowly, resulting in greater accumulation of these products leading to extensive adduct formation and 

tissue damage [60]. Acetaldehyde may also trigger asthma attacks in individuals with genetic alcohol 

dehydrogenase polymorphisms [82]. Inhalation of acetaldehyde for 30 min causes mild respiratory 
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irritation [83]. Acetaldehyde also has a significant role in the etiology of lung cancer [59]. Aldehydes 

in cigarette smoke are able to induce the pro-inflammatory cytokines, tumor necrosis factor alpha 

(TNF-�) and interleukin-6 (IL-6) from macrophages, and the neutrophil chemokine, interleukin-8 (IL-8), 

from human bronchial epithelial cells [84,85]. Aldehydes contained in cigarette smoke have been 

shown to inhibit human neutrophil apoptosis and contribute to neutrophilic accumulation, resulting in 

the delayed resolution of inflammation [86]. Acrolein, one of the major constituents of cigarette smoke, 

is involved in increased mucin production and regulation of lung matrix metalloproteinase 9 (MMP-9), 

which may result in decreased lung function in COPD patients [87]. In addition to this, glutathione  

is irreversibly modified by acrolein and crotonaldehyde in human airway epithelial cells [88]. 

Acetaldehyde is also considered a toxin with epigenetic and genetic effects [89]. Ethanol-induced hepatic 

steatosis, fibrosis, carcinoma and gastrointestinal injury are attributed to alcohol-mediated oxidative 

stress [90]. Lipid peroxidation affects mitochondrial membrane permeability [91]. Similarly, acetaldehyde 

could also inhibit mitochondrial reactions and functions [91]. Acrolein may have a role in epigenetic 

modification as it is known to form adducts with histone protein [92]. In brief, in addition to oxidative 

stress and immune dysfunction, membrane disruption, histone modification and mitochondrial dysfunction 

are other major pathological implications of aldehydes (Table 1). 

Table 1. Lung aldehydes, type of adducts formed and lung effect. 

Lung Aldehydes Source Lung Effect 
Acetaldehyde 

Malondialdehyde 

4-Hydroxynonenal 

Acrolein 

Formaldehyde 

Alcohol 

Cigarette smoke 

Environmental toxicants 

Oxidative stress [78,79] 

COPD, asthma, emphysema [81,82] 

Mild respiratory irritation [83] 

Release of pro-inflammatory cytokine [84,85] 

Epigenetic and genetic effect [89] 

Lung Adducts Aldehydes Involved Lung Effect 

Protein adduct 

Acetaldehyde, 

Malondialdehyde, 

4-hydroxynonenal 

Damage protein structure and function [93,94] 

Slow cilia beating [95] 

Inhibition of anti-oxidative defense [96] 

Stimulation of fibrogenesis [97,98]  

and induction of immune response [99–101] 

DNA adduct 

Acetaldehyde, 

Malondialdehyde, 

Formaldehyde 

Base pair mutation [102,103] 

Carcinogenesis [104,105] 

Increased risk of mutation [102,106] 

Hybrid adduct 
Acetaldehyde, 

Malondialdehyde 

Induce pro-inflammatory chemokine [107] 

Inhibit bronchial epithelial cell wound closure [108] 

Increase influx of neutrophils [74] 

Even though chronic alcohol ingestion and cigarette smoke are two major sources of aldehydes in 

the lung, few studies have been conducted on the co-exposure of alcohol and cigarette smoke in the 

lung. This co-exposure is important because the highest level of aldehydes is generated when lungs are  

co-exposed to cigarette smoke and alcohol [54,109]. This co-exposure often leads to oxidative stress 

resulting in high concentrations of acetaldehyde and malondialdehyde in the lung [109]. Therefore, the 

reactive aldehydes generated in the lung could be related to various lung pathologies associated with 

alcohol abuse and cigarette smoking. 
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7. Lung Aldehydes and Protein Adduction 

 

 

Figure 2. Acetaldehyde and MDA could form hybrid adduct through Schiff base reaction 

when 2 mole of MDA react with 1 mole of AA to form a stable hybrid adduct. Aldehydes 

like AA, MDA, acrolein, 4-HNE and formaldehyde could also form protein adduct and 

DNA adduct. The main reactions involved are Schiff base (involves binding of aldehyde to 

the alpha group of an N-terminal amino acid of the protein) and Michael addition (involves 

of binding of aldehyde on amino groups (Lys and His) or thiols (Cys or GSH) [74–77]. 

Reactive aldehydes are electrophilic and react with a nucleophilic site that donates an electron to 

form a strong covalent bond leading to adduct formation [110]. Generally, one of two chemical reactions 

are involved in adduct formation (Figure 2) [111]. One is a Michael addition, which is the reaction 

between �-carbon of aldehydes and nucleophilic groups to form 1,2-addition with the double bond. 

Secondly, there is a base reaction that involves formation of Schiff bases between the carbonyl carbon 

of aldehyde and the primary amino group of lysine or N-terminal residues [112]. Various stable 

and unstable adducts are formed when reactive aldehydes generated covalently bind to amino acid 

residues of proteins [113]. Such adduction may disturb protein cellular functions [93]. Aldehydes 

damage protein structure by forming adducts through covalent bonding with cysteine, lysine or histidine 
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residues [94]. In the lung, both ADH- and CYP2E1-catalyzed metabolism of alcohol is associated with 

generation of acetaldehyde, a reactive aldehyde capable of binding to cellular proteins [58]. Acetaldehyde, 

the first metabolite of alcohol, is highly reactive and forms adducts primarily by binding to reactive 

lysine residues of preferred target proteins [114]. Acetaldehyde also has the ability to covalently bind to 

several proteins that could be detrimental to the protein function [115], due to formation of both stable and 

unstable adducts with various proteins [116]. In addition, other lipid peroxidation-generated aldehydic 

products such as MDA and HNE also form Schiff base adducts with proteins [117]. 

Several proteins such as albumin, tubulin, lipoproteins, collagens and erythrocyte membrane proteins 

serve as targets for aldehyde adduction [118]. Accumulation of acetaldehyde due to excess alcohol 

consumption can lead to increased interaction of this aldehyde with biomolecules [28]. Tobacco smoke 

is another source of oxidative stress in the lung as it induces the production of aldehyde-mediated 

injury through oxidative DNA damage and lipid peroxidation of cell membranes [119]. In addition to 

acetaldehyde, 4-HNE has been known to form protein adducts with insulin and histidine residues in 

proteins [120]. 

8. Pathological Implications of Protein Adducts 

Slow cilia beating and decreases in cilia dynein ATPase activity have been reported as a result  

of acetaldehyde binding with dynein and tubulin proteins important for cilia motion [95]. 

Adduction of acetaldehyde with GSH inhibits the anti-oxidative defense system (AODS) responsible 

for the detoxification of ROS and reactive nitrogen species (RNS) [96]. Stimulation of nuclear  

factor-kappa B (NF�B), which regulates the secretion of pro-inflammatory cytokines, is another 

effect of acetaldehyde [121]. Aldehyde products stimulates fibro genesis by increasing the expression 

of connective tissue proteins and extracellular matrix components [97,98] and induces immune 

responses [99–101]. Also, 4-HNE formed during lipid peroxidation after ozone exposure appears to 

form specific protein adducts which is toxic and cause apoptosis of murine lung cells [122]. Acute 

alcohol toxicity may lead to formation of malondialdehyde protein adduct in the muscle [123]. The 

presence of HNE-protein adducts has also been studied in diseases related to oxidative stress such as 

neurodegenerative diseases and atherosclerosis [124]. Similarly, protein adducts of acrolein may have a 

role Alzheimer’s disease, Parkinson’s disease [125], atherosclerosis [126] and chronic obstructive lung 

disease [127]. Exposure of 4-HNE to THP-1 cells resulted in modification of proteins and enzymes 

involved in cytoskeleton organization, stress responses, and other metabolic pathways [128]. MDA and 

4-HNE protein adduct formation in the liver could play an important role in the development and 

progression of alcoholic liver disease [129,130]. In COPD patients, a large number of carbonyl-modified 

proteins has been reported in the peripheral lung tissue and correlated with disease severity measured 

by the decline in forced expiratory volume in 1 second (FEV1) [131]. Aldehyde-modified protein 

formation also has an effect on cellular responses. 4-HNE adduction with extracellular signal-regulated 

kinases (ERK1/2) decreased ERK-1/2 phosphorylation and nuclear localization [132]. Similarly, the 

modification of adenosine monophosphate-activated protein (AMP) kinase with 4-HNE inhibits its 

kinase activity and attenuates downstream AMP kinase signaling pathway in MCF-7 breast cancer 

cells [133]. HNE forms adducts with c-Jun amino-terminal kinases (JNKs) leading to nuclear translocation 

and activation in human hepatic stellate cells [134]. Aldehyde adduct also interferes with the function of 
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extracellular matrix protein, which could lead to the formation of scar tissue in the liver [65]. MDA, 

and 4-HNE modified proteins has also been studied in human eye disease [135]. 

9. Lung Aldehydes and DNA Adduction 

Acetaldehyde is highly reactive and the electrophilic nature of its carbonyl carbon results in  

reactions with DNA, generating DNA adducts [136]. This could explain the cytotoxic, genotoxic, 

mutagenic, and clastogenic nature of acetaldehyde as DNA adduct formation plays a critical role in 

carcinogenesis [104,105]. Most of these effects have been proposed to originate from a variety of  

DNA-acetaldehyde adducts [104]. DNA base deoxyguanosine (dG) is the major target for adduction 

followed by deoxyadenosine (dA) and then deoxycytosine (dC) [137]. Acetaldehyde forms other DNA 

adducts such as N2-ethyl-2'-deoxyguanosine (N2-Et-dG) [138] and 1,N2-propano-2'-deoxyguanosine 

(PDG) [139]. Another well-studied aldehyde-DNA adduct is the crotonaldehyde-derived propano-dG 

(CrPdGs) adduct [136]. MDA, a natural product of lipid peroxidation, is also capable of forming an 

exocyclic DNA adduct named malondialdehyde-deoxyguanosine adduct (M1dG) after its interaction 

with DNA [140]. MDA-DNA adduct is also formed when base propenal intermediate is formed during 

direct DNA oxidation [141]. 4-HNE, a well-known end product of LPO, also forms exocyclic ethanol 

DNA adducts, which are highly carcinogenic [142]. Formaldehyde, an aldehyde contained in cigarette 

smoke, also induces ROS formation in many tissues, which can further interact with DNA [143] 

Malondialdehyde formed in the lung of cigarette smokers could form adducts with DNA bases and 

may damage such macromolecules [39]. 

10. Pathological Implications of DNA Adducts 

DNA damage is one of the important pathological conditions associated with DNA adduct formation 

as this could increase the risk of somatic mutations [106] by inducing base pair mutations and causing 

frame-shift mutations [102,103]. MDA-DNA adducts in a number of tissues, including liver [144], 

breast [145] and oral mucosal cells [146]. Another DNA adduct, M1dG, may be associated with increased 

cancer risk and tumor progression [106]. MDA-DNA adducts might contribute to the cause of  

tobacco-related laryngeal cancer as these adducts have been detected in the bronchial epithelium and in 

the larynx of smokers [39,145]. Also, an increased level of MDA-dA was reported in the larynx of 

subjects with the highest intake of alcohol (>44 g) [147]. M1dG adduct was also detected both in 

human bronchial epithelial cells and mouse lung tissue exposed to alcohol [148]. In addition to lung, 

MDA-DNA adducts were also detected in tissues from patients with breast cancer [145]. A correlation 

was found between CYP2E1, 4-HNE and exocyclic ethanol adducts of adenine and cytosine in 

patients with alcoholic liver disease [149]. M1dG adducts were also detected on leukocytes exposed 

to formaldehyde [140] and industrial air pollution [106]. DNA adducts formed by acetaldehydes could 

prompt replication errors and mutations in oncogenes or onco-suppressor genes, which increases risk 

for carcinogenesis [150]. 
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11. Lung Aldehydes and Hybrid Adducts 

People with AUDs are two to three times more likely to smoke cigarettes than those without  

AUDs [151]. This suggests more frequent and higher rates of cigarette smoking among those with 

AUDs than in the general population [152]. Also a strong correlation exists between alcohol and tobacco 

consumption and heavy drinkers have more trouble quitting smoking than do light drinkers [153]. In 

the lung, a unique aldehyde environment is created during co-exposure to alcohol and cigarette smoke 

due to the generation of a high concentration of aldehydes [74]. For instance, high concentrations of 

acetaldehyde and malondialdehyde were detected in the BAL fluid of mice co-exposed to cigarette 

smoke and alcohol [109]. This elevated level of aldehydes is of importance as it is necessary for the 

formation of the hybrid malondialdehyde-acetaldehyde (MAA) adduct in mouse lung [109]. Formation 

of five different types of protein adducts, acetaldehyde, MDA, MAA, 4-HNE and hydroxyl ethyl 

radical, are reported to form after ethanol consumption [154]. MAA-adducted proteins are highly 

stable and resistant to rapid degradation [109]. This hybrid adduct is composed of a cyclic product 

consisting of two molecules of MDA and one molecule of acetaldehyde as a result of a Schiff base 

reaction described previously [155]. The MAA adduct is highly fluorescent and can be detected for a 

few weeks in the liver as a result of slow degradation [156,157]. In comparison to single exposure to 

alcohol or smoke alone, MAA adducts have been detected only in the lungs of mice exposed to both 

alcohol and cigarette smoke [109]. Different endogenously nucleophilic proteins contained in the lung 

are the target of MAA to form hybrid adducts [109]. Among these, surfactant protein A (SP-A) and 

surfactant protein D (SP-D) synthesized primarily by type II alveolar cell in the alveolus have been 

extensively studied [74,158]. SP-A and SP-D play an important role in innate immunity as they can 

directly kill bacteria, or can act as an opsonizing agent by binding to bacteria subsequently enhancing 

macrophage phagocytosis [159]. MAA-adducted proteins are good ligands for scavenger receptor A 

(SRA; CD204), which are expressed extensively on macrophages and also found on endothelial cells, 

platelets, and epithelial cells [160,161]. MAA stimulates inflammatory responses in airway epithelial 

cells through binding to SRA [158]. Diminished antibody responses to MAA-bovine serum albumin 

(MAA-Alb) in SRA knockout mice have also been previously reported [160]. In addition, pre-treatment 

with SRA-binding ligand, fucoidan, blocked MAA adduct-mediated release of pro-inflammatory 

chemokine IL-8 [107]. 

12. Pathological Implications of Hybrid Adduct 

The hybrid adduct, MAA, has been reported to induce pro-inflammatory responses and delay 

wound healing in airway epithelial cells. MAA adduct stimulates release of the neutrophil chemokine, 

IL-8, when exposed to bronchial epithelial cells [107]. Similarly, intranasal instillation of SPD-MAA in 

mice induced KC (CXCL1), a homolog of human IL-8, in comparison to saline or non-adducted SPD 

control [74]. This elevation in KC release resulted in an influx of neutrophils in the lungs of mice 

instilled with MAA adduct for 3 weeks [74]. MAA adduct-stimulated cytokine release is blocked by 

protein kinase C (PKC) inhibitors, implicating a role for PKC in MAA-adducted protein-stimulated 

IL-8 release from bronchial epithelial cells [107]. MAA adducts have also been shown to inhibit 

bronchial epithelial cell wound closure [108]. MAA adduct-induced inflammation is also mediated 
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through PKC as MAA adducts activate PKC epsilon in tracheal epithelial cells [74,107]. Immunologic 

reactions associated with alcohol-related liver disease and atherosclerosis-induced vascular inflammatory 

injury also have been associated with MAA adduct formation [162,163]. In addition to IL-8, MAA 

adducts have been reported to induce the expression of inflammatory cytokines such as TNF, intracellular 

adhesion molecule and vascular cell adhesion molecule in liver endothelial cells [164]. Increased 

formation of MAA adduct has also been reported in rheumatoid arthritis synovial tissue [165]. MAA 

adducts also induce an antibody response as T helper and cytotoxic T cells exhibit robust antibody 

responses to MAA epitope [166]. Extent of tissue damage in acute injury and chronic disease states such 

as atherosclerosis could be correlated to this antibody response [163]. Circulating MAA-modified proteins 

in the bloodstream could be bound, internalized, degraded and presented to the cells of the immune 

system resulting in an immune response [167]. Formation of MAA adducts with N-terminal and bait 

region of mouse alpha 2 macroglobulin (A2M) has been shown to modulate its proteinase and TGF-b1 

binding function [168]. 

13. Conclusions 

Chronic alcohol consumption and cigarette smoking result in the production of several types of 

aldehyde adducts in the lung. The formation of these adducts leads to impaired function and induces 

inflammation and mutagenesis. Although chronic alcohol abuse predisposes the host to pneumonia and 

ARDS, very few studies have focused on the role of alcohol metabolism in alcohol-induced toxicity 

and its consequences in the lung. Many studies have been directed toward cigarette smoke-induced 

oxidative stress, but it has been shown that alcohol also increases LPO leading to the generation of 

reactive aldehydes such as acetaldehyde and MDA. Because the lung is continuously exposed to high 

concentration of alcohol in heavy drinkers, alcohol significantly contributes to the high level of 

aldehydes detected in the lung. Several mechanisms have been proposed to understand the 

consequences of alcohol-induced liver injury, but only limited studies have been done in the case of 

the lung. Additional studies are required to further clarify the role of alcohol in oxidative stress and 

aldehyde generation in the lung. Additional studies are needed to determine the role of different 

adducts formed in the lung and their role in lung pathogenesis. As ROS-mediated lipid peroxidation is 

a major source of aldehyde generation in lung, it is also important to study different factors that 

stimulate ROS generation. Different reactive aldehydes and adducts formed in the lung could act as 

potential biological markers for the source and degree of lung injury associated with alcohol, cigarette 

smoke and other inhaled environment pollutants. Discovering innovative approaches to better identify 

the mechanisms through which adducts cause lung injury, however, still remains a challenge for 

researchers. Among all adducts, the stability of the MAA hybrid adduct may play a prominent role in 

mediating the long term consequences of chronic alcohol abuse and cigarette smoking with respect to 

the development of respiratory infections as well as emphysema and COPD. Understanding factors 

regulating adduct production and their role in the progression of chronic lung diseases is necessary and 

important in order to develop new therapeutic approaches targeting the formation and accumulation of 

reactive aldehyde adducts for promoting the resolution of lung injury. 
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